On the Galois groups of Legendre polynomials
نویسندگان
چکیده
منابع مشابه
Galois groups of multivariate Tutte polynomials
The multivariate Tutte polynomial ẐM of a matroid M is a generalization of the standard two-variable version, obtained by assigning a separate variable ve to each element e of the ground set E. It encodes the full structure of M . Let v = {ve}e∈E , let K be an arbitrary field, and suppose M is connected. We show that ẐM is irreducible over K(v), and give three self-contained proofs that the Gal...
متن کاملOn Polar Legendre Polynomials
We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...
متن کاملOn Ramification Polygons and Galois Groups of Eisenstein Polynomials
Let φ(x) be an Eisenstein polynomial of degree n over a local field and α be a root of φ(x). Our main tool is the ramification polygon of φ(x), that is the Newton polygon of ρ(x) = φ(αx+α)/(αx). We present a method for determining the Galois group of φ(x) in the case where the ramification polygon consists of one segment.
متن کاملComputing Galois Groups with Generic Resolvent Polynomials
Given an arbitrary irreducible polynomial f with rational coefficients it is difficult to determine the Galois group of the splitting field of that polynomial. When the roots of f are easy to calculate, there are a number of “tricks” that can be employed to calculate this Galois group. If the roots of f are solvable by radicals, for example, it is often easy to calculate by hand the Q-fixing au...
متن کاملWavelets Based on Legendre Polynomials
We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented and illustrated with analytical data and real-life signals from turbulent flow fields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2014
ISSN: 0019-3577
DOI: 10.1016/j.indag.2014.01.004